Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.
Ā
| TECHNICAL DATA Ā |
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
Ā F– air cooling methodĀ Ā Ā S–Ā water cooling method
Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā Ā
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors,Ā oil-free compressors and air end, special gas compressors, various air compressors andĀ post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. OtherĀ Ā voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Ā
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,Ā China.
Ā
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Oil-free |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Is the Impact of Ambient Temperature on Scroll Compressor Performance?
Ambient temperature has a significant impact on the performance of scroll compressors. Here’s a detailed explanation:
1. Capacity and Cooling Efficiency:
The ambient temperature directly affects the cooling capacity and efficiency of a scroll compressor. As the ambient temperature increases, the cooling capacity of the compressor decreases. This is because the compressor needs to work harder to reject heat to a higher ambient temperature, resulting in reduced cooling efficiency. Conversely, at lower ambient temperatures, the cooling capacity of the compressor increases.
2. Compressor Overheating:
High ambient temperatures can lead to compressor overheating. When the ambient temperature exceeds the manufacturer’s recommended operating range, the compressor may struggle to dissipate heat effectively. This can cause the compressor to overheat and potentially lead to compressor damage or premature failure. Adequate ventilation and airflow around the compressor are crucial to mitigate the risk of overheating.
3. Increased Power Consumption:
In hotter ambient conditions, scroll compressors may require more power to maintain the desired cooling output. The compressor’s motor has to work harder to overcome the elevated temperature and compressor inefficiencies caused by high ambient temperatures. As a result, the compressor’s power consumption may increase, leading to higher energy costs.
4. Refrigerant Properties:
Ambient temperature also affects the properties of the refrigerant circulating in the compressor system. The refrigerant’s pressure and temperature characteristics change with variations in ambient temperature. These changes can impact the compressor’s suction and discharge pressures, affecting its overall performance and efficiency. Manufacturers provide performance data and specifications that consider specific ambient temperature ranges for optimal compressor operation.
5. Defrost Cycle:
In refrigeration systems that incorporate defrost cycles, ambient temperature plays a crucial role. During the defrost cycle, the outdoor unit of the system (which includes the scroll compressor) temporarily switches to heating mode to melt accumulated frost or ice. The ambient temperature affects the duration and effectiveness of the defrost cycle. In colder ambient temperatures, the defrost cycle may need to operate for longer to ensure complete defrosting.
6. System Design Considerations:
The impact of ambient temperature on scroll compressor performance should be considered during system design. Proper sizing and selection of the compressor, along with other system components such as condensers and evaporators, should account for the expected ambient temperature range. Oversizing the compressor or underestimating the effects of high ambient temperatures can lead to inefficient operation, higher energy consumption, and potential system issues.
It is important to note that different scroll compressor models may have specific temperature limitations and performance characteristics. Manufacturers provide guidelines and performance data, including ambient temperature ranges, to ensure optimal compressor operation and reliability.
Understanding the impact of ambient temperature on scroll compressor performance helps in proper system design, installation, and maintenance. It allows for efficient operation, improved reliability, and optimized cooling performance in various applications.
.webp)
Are There Variable Speed Scroll Compressors Available?
Yes, variable speed scroll compressors are available in the market. Here’s a detailed explanation:
1. Variable Speed Technology:
Variable speed scroll compressors, also known as inverter-driven or modulating scroll compressors, are designed to vary their speed and output capacity to match the changing cooling or heating demands of a system. Unlike fixed-speed compressors that operate at a constant speed, variable speed compressors can adjust their rotational speed based on the required cooling or heating load.
2. Energy Efficiency:
Variable speed scroll compressors offer improved energy efficiency compared to fixed-speed compressors. By adjusting the compressor’s speed to precisely match the cooling or heating requirements, variable speed compressors can reduce energy consumption. This is particularly beneficial in applications with varying load conditions, as the compressor can operate at lower speeds during periods of lower demand, resulting in energy savings.
3. Enhanced Comfort and Temperature Control:
Variable speed scroll compressors provide enhanced comfort and temperature control in HVAC systems. The capability to modulate the compressor’s output allows for more precise and consistent temperature regulation. The compressor can operate at lower speeds for longer durations, maintaining a stable indoor environment with reduced temperature fluctuations and improved humidity control.
4. Quieter Operation:
Variable speed scroll compressors typically operate at lower speeds compared to fixed-speed compressors. This results in reduced noise levels, making them suitable for applications that require quiet operation, such as residential buildings, hotels, and offices. The reduced noise emissions contribute to a more comfortable and peaceful environment.
5. Extended Lifespan:
Variable speed operation can help extend the lifespan of scroll compressors. By running at lower speeds and experiencing fewer start-stop cycles, the compressor experiences less wear and tear. This can result in increased durability and longevity of the compressor, reducing the need for frequent replacements or repairs.
6. System Flexibility:
Variable speed scroll compressors offer system design flexibility. They can be integrated into various HVAC systems, including air conditioners, heat pumps, and refrigeration units. Their adaptability to varying load conditions allows for more precise system design and sizing, optimizing the overall performance and efficiency of the HVAC system.
7. Application Range:
Variable speed scroll compressors are suitable for a wide range of applications, including residential, commercial, and industrial settings. They are commonly used in HVAC systems for buildings, hotels, hospitals, data centers, and other facilities where energy efficiency, precise temperature control, and quiet operation are important considerations.
It’s important to note that the availability of variable speed scroll compressors may vary depending on the specific manufacturer and region. When considering the use of variable speed scroll compressors, it’s recommended to consult with HVAC professionals and review the manufacturer’s product specifications to ensure compatibility and optimal performance within the intended application.
.webp)
What Are the Key Components of a Scroll Compressor?
A scroll compressor consists of several key components that work together to facilitate the compression process. Here’s a detailed explanation of the key components:
1. Stationary Scroll:
The stationary scroll, also known as the fixed scroll, is a stationary component in the scroll compressor. It has a spiral-shaped profile that interlocks with the orbiting scroll. The stationary scroll remains fixed in place during operation and provides a stable foundation for the compression process.
2. Orbiting Scroll:
The orbiting scroll, also known as the movable scroll, is the component that moves in an eccentric circular motion. It also has a spiral-shaped profile that interlocks with the stationary scroll. The orbiting scroll’s motion creates varying volume chambers between the scrolls, which trap and compress the gas or fluid. The orbiting scroll is driven by a motor or an external force to maintain the continuous compression process.
3. Motor or Drive Mechanism:
The motor or drive mechanism is responsible for powering the motion of the orbiting scroll. It provides the necessary rotational force to drive the scroll in an eccentric motion. In some scroll compressors, the motor is directly coupled to the orbiting scroll, while in others, an external drive mechanism, such as a belt or a crankshaft, is used to transfer the motion.
4. Housing or Casing:
The housing or casing encloses the scroll compressor’s internal components and provides structural support. It also helps to contain and direct the flow of gas or fluid during the compression process. The housing is typically made of durable materials to withstand the operating conditions and maintain the integrity of the compression chamber.
5. Suction and Discharge Ports:
The suction and discharge ports are openings in the scroll compressor that allow the gas or fluid to enter and exit the compression chamber, respectively. The suction port is connected to the intake side of the compressor, where the gas or fluid is drawn in during the suction stroke. The discharge port is located at the center of the scrolls and allows the compressed gas or fluid to exit the compressor during the discharge stroke.
6. Bearings:
Bearings are used to support the rotation of the orbiting scroll and reduce friction. They provide smooth and stable movement of the orbiting scroll within the compressor. The bearings are typically located at strategic points to ensure proper alignment and minimize wear and tear during operation.
7. Sealing Mechanism:
A sealing mechanism is employed to maintain proper sealing between the scrolls during operation. This prevents leakage of the gas or fluid and ensures efficient compression. The sealing mechanism may include seals, gaskets, or other components that create a tight seal between the scrolls.
8. Cooling System:
Some scroll compressors may incorporate a cooling system to manage the heat generated during compression. This could include features such as cooling fins, internal cooling channels, or an external cooling system to maintain optimal operating temperatures and prevent overheating.
These key components work together in a synchronized manner to facilitate the compression process in a scroll compressor. The interlocking scrolls, driven by the motor or drive mechanism, create varying volume chambers that compress the gas or fluid, while the housing, ports, bearings, sealing mechanism, and cooling system ensure efficient and reliable operation.
In summary, the key components of a scroll compressor include the stationary scroll, orbiting scroll, motor or drive mechanism, housing or casing, suction and discharge ports, bearings, sealing mechanism, and cooling system. Each component plays a crucial role in facilitating the compression process and maintaining the integrity of the compressor.


editor by CX 2023-10-20