Product Description
Product Description
1.Atals-Copco Air-End
Atlas-Copco Group 149years air-end research & development experience.
2.High Efficiency & Save Energy
High efficiency & energy saving intake valve,keep in lower unloading pressure and avoid large energy consumption whenĀ
3.Easy Installation & Operation
Compressor is filled with inbrication oil before delivering. You can operate it after installing and power on.
4.Low noise & low vibration
Atlas-copco air-end, low noise & vibration.
5.Reliability & Safety
Reliability bigger cooler, lower operating temperature.
Detailed Photos
Product Parameters
| LSW-8A PM-8 | 8 | 116 | 0.5~1.1 | 10 | 7.5 | 510 | Air Cooled |
Belt Driven | 57±2 | G3/4” | Ā — | Ā — | 800*800*1200 |
| LSW-8A PM-10 | 10 | 145 | 0.4~0.9 | ||||||||||
| LSW-11A PM-8 | 8 | 116 | 0.7~1.7 | 15 | 11 | 620 | Air Cooled |
Direct Driven | 60±2 | G3/4” | Ā — | Ā — | 1200*855*1335 |
| LSW-11A PM-10 | 10 | 145 | 0.6~1.4 | ||||||||||
| LSW-15A PM-8 | 8 | 116 | 1.0~2.3 | 20 | 15 | 670 | Air Cooled |
Direct Driven | 60±2 | G3/4” | Ā — | Ā — | 1200*855*1335 |
| LSW-15A PM-10 | 10 | 145 | 0.9~2.0 | ||||||||||
| LSW-18.5A PM-8 | 8 | 116 | 1.2~3.0 | 25 | 18.5 | 730 | Air Cooled |
Direct Driven | 63±2 | G1” | Ā — | Ā — | 1400*1571*1340 |
| LSW-18.5A PM-10 | 10 | 145 | 1.0~2.6 | ||||||||||
| LSW-22A PM-8 | 8 | 116 | 1.5~3.6 | 30 | 22 | 780 | Air Cooled |
Direct Driven | 63±2 | G1” | Ā — | Ā — | 1400*1571*1340 |
| LSW-22A PM-10 | 10 | 145 | 1.3~3.0 | ||||||||||
| LSW-30A PM -8 | 8 | 116 | 2.1~5.1 | 40 | 30 | 1150 | Air Cooled |
Direct Driven | 66±2 | G1-1/4” | Ā — | Ā — | 1650*1180*1505 |
| LSW-30A PM-10 | 10 | 145 | 1.8~4.3 | ||||||||||
| LSW-37A PM-8 | 8 | 116 | 2.6~6.4 | 50 | 37 | 1200 | Air Cooled |
Direct Driven | 66±2 | G1-1/4” | Ā — | Ā — | 1650*1180*1505 |
| LSW-37A PM-10 | 10 | 145 | 2.2~5.4 | ||||||||||
| LSW-45W PM-8 | 8 | 116 | 3.3~8.2 | 60 | 45 | 1490 | Water Cooled |
Direct Driven | 68±2 | G2” | G1-1/2” | 10 | 1800*1360*1670 |
| LSW-45W PM-10 | 10 | 145 | 2.8~7.0 | ||||||||||
| LSW-55W PM-8 | 8 | 116 | 4.0~10 | 75 | 55 | 1570 | Water Cooled |
Direct Driven | 69±2 | G2” | G1-1/2” | 12 | 1800*1360*1670 |
| LSW-55W PM-10 | 10 | 145 | 3.4~8.5 | ||||||||||
| LSW-75W PM-8 | 8 | 116 | 5.2~13.0 | 75 | 55 | 1750 | Water Cooled |
Direct Driven | 69±2 | G2” | G1-1/2” | 18 | 1800*1360*1670 |
| LSW-75W PM-10 | 10 | 145 | 4.4~11.1 | ||||||||||
| LSW-90W PM-8 | 8 | 116 | 6.9~17.2 | 120 | 90 | 2450 | Water Cooled |
Direct Driven | 73±2 | G2-1/2” | G1-1/2” | 20 | 2200*1550*1800 |
| LSW-90W PM-10 | 10 | 145 | 5.9~14.6 | ||||||||||
| LSW-110W PM-8 | 8 | 116 | 8.2~20.3 | 150 | 110 | 2580 | Water Cooled |
Direct Driven | 75±2 | G2-1/2” | G2” | 24 | 2200*1550*1800 |
| LSW-110W PM-10 | 10 | 145 | 7.0~17.3 | ||||||||||
| LSW-132W PM-8 | 8 | 116 | 9.7~24.1 | 180 | 132 | 2700 | Water Cooled |
Direct Driven | 75±2 | G2-1/2” | G2” | 30 | 2700*1550*1800 |
| LSW-132W PM-10 | 10 | 145 | 8.2~20.5 | ||||||||||
| LSW-160W PM-8 | 8 | 116 | 11.3~28.2 | 210 | 160 | 3900 | Water Cooled |
Direct Driven | 77±2 | G3” | G3” | 35 | 3000*1800*2100 |
| LSW-160W PM-10 | 10 | 145 | 9.6~24.0 | ||||||||||
| LSW-185W PM-8 | 8 | 116 | 12.9~32.1 | 240 | 185 | 4050 | Water Cooled |
Direct Driven | 77±2 | G3” | G3” | 38 | 3000*1800*2100 |
| LSV180W PM-10 | 10 | 145 | 11.0~27.3 | ||||||||||
| LSW-200W PM-8 | 8 | 116 | 13.8~34.5 | 270 | 200 | 4200 | Water Cooled |
Direct Driven | 78±2 | G4” | G4” | 42 | 3000*1800*2100 |
| LSW-200W PM-10 | 10 | 145 | 11.7~29.3 | ||||||||||
| LSW-220W PM-8 | 8 | 116 | 15.5~38.6 | 295 | 220 | 4400 | Water Cooled |
Direct Driven | 79±2 | G4” | G4” | 47 | 3100*1850*2100 |
| LSW-220W PM-10 | 10 | 145 | 13.2~32.8 | ||||||||||
| LSW-250W PM-8 | 8 | 116 | 17.1~42.6 | 340 | 250 | 4800 | Water Cooled |
Direct Driven | 79±2 | G4” | G4” | 53 | 3100*1850*2100 |
| LSW-250W PM-10 | 10 | 145 | 14.5~36.2 |
Company Profile
FAQ
Q1: Are you a manufacturer or trading company?
A1: Xihu (West Lake) Dis.in is professional screw air compressor factory located in HangZhou, China, CHINAMFG is Xihu (West Lake) Dis.in overseas market sales representative.
Q2: Xihu (West Lake) Dis.in is real member of Atlas-copco group?
A2: Yes, in 2571, Sweden Atlas-copco 100% acquired Xihu (West Lake) Dis.in.
Q3: Xihu (West Lake) Dis.in air-end from Atlas-copco?
A3: Yes, Xihu (West Lake) Dis.in LS/LSV, LOH, LSH and CS series air compressors all use Atlas Copco’s air-end.
Q4: What’s your delivery time?
A4: about 10-20days after you confirm the order, other voltage pls contact with us.
Q5: How long is your air compressor warranty?
A5: One year for the whole machineĀ since leave our factory.Ā
Q6: What’s the payment term?
A6:We accept T/T, LC at sight, Paypal etc.
Also we accept USD, RMB, JPY, EUR, HKD, GBP, CHF, KRW.
Q7: What’s the Min. Order requirement?
A7: 1unit
Q8: What service you can support?
A8: We offer after-sales service, custom service, production view service and one-stop service.
Ā
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Installation Type: | Stationary Type |
| Type: | Single Screw Compressor |
| Model: | Lsw220W Pm-8 |
| Power: | 220kw/ 300HP |
| Samples: |
US$ 82517/unit
1 unit(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do You Ensure the Air Quality Produced by Oil-Free Compressors?
Ensuring the air quality produced by oil-free compressors involves a combination of factors, including proper equipment selection, appropriate maintenance practices, and adherence to industry standards. Here’s a detailed explanation of how to ensure the air quality produced by oil-free compressors:
1. Equipment Selection:
Choosing the right oil-free compressor is the first step in ensuring air quality. It is essential to select a compressor that is specifically designed for applications requiring clean air, such as food and beverage processing, pharmaceutical manufacturing, electronics assembly, and medical facilities. Consideration should be given to the compressor’s filtration capabilities, air treatment options, and compliance with relevant industry standards and regulations.
2. Filtration Systems:
The filtration systems integrated into oil-free compressors play a crucial role in maintaining air quality. These systems typically include pre-filters, coalescing filters, and activated carbon filters. Pre-filters remove larger particles, coalescing filters capture smaller particles and coalesce water vapor, and activated carbon filters absorb odors and remaining oil vapors. Regular inspection and replacement of filters are necessary to ensure their effectiveness in removing contaminants from the compressed air.
3. Regular Maintenance:
Regular maintenance is key to preserving air quality. This includes following the manufacturer’s recommended maintenance schedule, which may involve tasks such as filter replacement, lubrication of non-compressed parts, and inspection of seals and gaskets. Proper maintenance helps prevent air leaks, ensures the compressor operates efficiently, and reduces the risk of contamination.
4. Air Quality Testing:
Periodic air quality testing is essential to verify the effectiveness of the oil-free compressor and its filtration system. Air quality testing can involve measuring parameters such as oil content, particulate matter, moisture levels, and microbiological contamination. By conducting regular air quality tests, any deviations from the desired air quality standards can be identified, allowing for corrective actions to be taken promptly.
5. Compliance with Standards:
Adhering to industry standards and regulations is crucial in ensuring air quality. Standards such as ISO 8573 specify the acceptable limits for contaminants in compressed air, including oil content, particulate matter, and moisture. Compressors should be selected, installed, and operated in accordance with these standards. Regular auditing and certification processes can help ensure ongoing compliance and provide assurance of air quality to stakeholders.
6. Training and Education:
Proper training and education of personnel involved in the operation and maintenance of oil-free compressors are vital. Operators should be familiar with the specific requirements of oil-free compressors, including the importance of filtration, maintenance procedures, and recognizing signs of potential issues. Training programs can help ensure that operators have the necessary knowledge and skills to maintain air quality effectively.
By considering equipment selection, implementing robust filtration systems, conducting regular maintenance, performing air quality testing, complying with standards, and providing appropriate training, the air quality produced by oil-free compressors can be effectively ensured. These measures are essential for applications where air purity is critical, safeguarding product integrity, process efficiency, and the health and safety of personnel.
.webp)
Can Oil-Free Air Compressors Be Used in Cold Climates?
Yes, oil-free air compressors can be used in cold climates. Here’s a detailed explanation of the considerations and adaptations that may be necessary when using oil-free compressors in cold weather:
1. Cold-Start Capability:
Oil-free compressors should be designed and equipped with features that enable them to start and operate reliably in cold temperatures. This includes components such as low-temperature lubricants, preheating systems, and specialized insulation to prevent freezing or damage to critical parts.
2. Compressed Air Drying:
In cold climates, the moisture content in the compressed air can condense and freeze, leading to operational issues and potential damage to the compressed air system. It is crucial to incorporate proper compressed air drying equipment, such as refrigerated dryers or desiccant dryers, to remove moisture from the compressed air and prevent freezing within the system. This ensures the production of dry and reliable compressed air even in cold weather conditions.
3. Freeze Protection:
Special attention should be given to protecting the compressor and associated components from freezing. This may involve insulation, heat tracing, or the use of frost protection heaters in critical areas susceptible to freezing, such as air intakes, valves, filters, and condensate drains. Adequate insulation can help maintain optimal operating temperatures and prevent freezing-related issues.
4. Cold Weather Lubricants:
In extremely cold climates, it is essential to use specific lubricants that are designed to perform effectively at low temperatures. These lubricants should have low pour points and be capable of providing sufficient lubrication and protection to the compressor’s moving parts even in cold environments. Using the appropriate lubricants ensures reliable operation and prevents damage to the compressor during cold starts and operation.
5. Preventive Maintenance:
Regular preventive maintenance is crucial when using oil-free compressors in cold climates. It is essential to follow the manufacturer’s recommendations for maintenance tasks such as filter replacements, lubricant changes (if applicable), and inspection of critical components. Cold weather conditions can exacerbate wear and tear on equipment, so proper maintenance helps identify and address potential issues before they lead to operational problems.
6. Monitoring and Control:
Implementing advanced monitoring and control systems can provide real-time information about the compressor’s performance in cold climates. Monitoring parameters such as temperature, pressure, and system efficiency can help identify any deviations or potential issues caused by low temperatures. Additionally, control systems can optimize compressor operation and adjust parameters to ensure efficient performance in cold weather conditions.
It’s important to consult the manufacturer’s specifications and guidelines for the specific oil-free compressor model being used, as they may provide additional recommendations or requirements for operating the compressor in cold climates. Adhering to these guidelines and implementing appropriate adaptations will help ensure the reliable and efficient performance of oil-free air compressors in cold weather environments.
.webp)
What Is an Oil-Free Air Compressor?
An oil-free air compressor, also known as an oilless air compressor, is a type of air compressor that operates without the use of lubricating oil in the compression chamber. Unlike traditional air compressors that rely on oil for lubrication and sealing, oil-free compressors employ alternative methods to achieve compression and deliver clean, oil-free compressed air. Here’s a detailed explanation of how oil-free air compressors work and their key characteristics:
Working Principle:
Oil-free air compressors utilize various techniques to compress air without the need for oil. The most common methods include:
- Dry Compression: In this method, the compression chamber doesn’t have any oil present. Special materials, coatings, and surface treatments are used to reduce friction and wear between the moving parts, allowing for efficient compression without oil lubrication.
- Water or Air Cooling: Oil-free compressors often employ advanced cooling mechanisms, such as water or air cooling, to dissipate the heat generated during compression. This helps to maintain the operating temperature within acceptable limits and ensures the longevity of the compressor.
- Piston Rings and Seals: Instead of relying on oil for lubrication and sealing, oil-free compressors use specialized piston rings, seals, or other forms of dry frictionless technology. These components provide the necessary sealing and reduce internal friction, allowing for efficient compression without the need for oil.
Characteristics of Oil-Free Air Compressors:
1. Clean and Oil-Free Air: The primary advantage of oil-free air compressors is that they deliver air that is free from oil contamination. This makes them suitable for applications where oil contamination can be detrimental, such as in the medical, pharmaceutical, food and beverage, electronics, and automotive industries.
2. Low Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated compressors. Since there is no oil to change or monitor, maintenance tasks related to oil filtration, oil changes, and oil disposal are eliminated. This can result in cost savings and reduced downtime.
3. Compact and Lightweight: Oil-free compressors are often designed to be compact and lightweight, making them portable and easy to transport. This makes them suitable for applications where mobility is required, such as construction sites, workshops, and on-site maintenance tasks.
4. No Oil Contamination Risk: With oil-free compressors, there is no risk of oil contaminating the compressed air system. This eliminates the need for additional filtration or separation equipment to remove oil from the compressed air, simplifying the overall system design.
5. Lower Initial Cost: In general, oil-free compressors tend to have a lower initial cost compared to oil-lubricated compressors. This can be advantageous for applications with budget constraints or when the specific requirements of the application align with the capabilities of oil-free compressors.
It’s important to note that oil-free air compressors may have certain limitations compared to oil-lubricated compressors. They may have lower maximum operating pressures and higher operating temperatures. Additionally, the absence of oil lubrication may result in slightly reduced efficiency and increased wear on certain components over time.
By understanding the working principle and characteristics of oil-free air compressors, users can determine whether this type of compressor is suitable for their specific application and requirements.


editor by CX 2024-02-25