Product Description

Ā 

Ā 

Hermetic piston compressor, MT/Z medium and high temperature compressor specifications
Rated Performance R22,R407C-50HZ
Model Rated Performance* MT-R22 Rated Performance** MTZ-R407C
Capacity(W)Ā  Input Power (KW)Ā  Input current(A)Ā  COPĀ  (W/W) Capacity(W)Ā  Input Power (KW)Ā  Input current(A)Ā  COPĀ  (W/W)
MT/MTZ 18 JA 3881 1.45 2.73 2.68 3726 1.39 2.47 2.68
MT/MTZ 22 JC 5363 1.89 3.31 2.84 4777 1.81 3.31 2.64
MT/MTZ 28 JE 7378 2.55 4.56 2.89 6137 2.35 4.39 2.61
MT/MTZ 32 JF 8064 2.98 4.97 2.70 6941 2.67 5.03 2.60
MT/MTZ 36 JG 9272 3.37 5.77 27.5 7994 3.12 5.71 2.56
MT/MTZ 40 JH 1571 3.85 6.47 2.72 9128 3.61 6.45 2.53
MT/MTZ 44 HJ 11037 3.89 7.37 2.84 9867 3.63 6.49 2.72
MT/MTZ 50 HK 12324 4.32 8.46 2.85 11266 4.11 7.34 2.74
MT/MTZ 56 HL 13771 5.04 10.27 2.73 12944 4.69 8.36 2.76
MT/MTZ 64 HM 15820 5.66 9.54 2.79 14587 5.25 9.35 2.78
MT/MTZ 72 HN 17124 6.31 10.54 2.71 16380 5.97 10.48 2.74
MT/MTZ 80 HP 19534 7.13 11.58 2.74 18525 6.83 11.83 2.71
MT/MTZ 100 HS 23403 7.98 14.59 2.93 22111 7.85 13.58 2.82
MT/MTZ 125 HU 3571 10.66 17.37 2.85 29212 10.15 16.00 2.88
MT/MTZ 144 HV 34340 11.95 22.75 2.87 32934 11.57 18.46 2.85
MT/MTZ 160 HW 38273 13.39 22.16 2.86 37386 13.28 21.40 2.82
MTM/MTZ200 HSS 46807 15.97 29.19 2.93 43780 15.54 26.90 2.82
MTM/MTZ250HUU 6 0571 21.33 34.75 2.85 57839 20.09 31.69 2.88
MTM/MTZ288 HVV 68379 23.91 45.50 2.87 65225 22.92 36.56 2.85
MTM/MTZ 320 HWW 76547 26.79 44.32 2.86 74571 26.30 42.37 2.81

Ā 

Rated Performance*High Efficiency CompressorR22-50HZ
Model Capacity/(W) Input Power (KW) Inputcuprret/(A) COP(W/W)
MT 45 HJ 10786 3.62 6.86 2.98
MT 51 HK 12300 4.01 7.86 3.07
MT 57 HL 13711 4.54 9.24 3.02
MT 65 HM 15763 5.23 8.81 3.01
MT 73 HN 17863 5.98 9.99 2.99
MT 81 HP 25718 6.94 11.27 2.93

R134a,R404A,R507-50Hz
Ā Model Rated Performance* R134A Rated Performance**R404A,R507-50HZ
Capacity(W)Ā  Input Power (KW)Ā  Input current(A)Ā  COPĀ  (W/W) Capacity(W)Ā  Input Power (KW)Ā  Input current(A)Ā  COPĀ  (W/W)
MT/MTZ 18 JA 2553 0.99 2.19 2.58 1865 1.2 2.47 1.56
MT/MTZ22 JC 3352 1.20 2.51 2.80 2673 1.56 2.96 1.71
MT/MTZ 28 JE 4215 1.53 3.30 2.75 3343 1.95 3.80 1.72
MT/MTZ 32 JF 4951 1.87 3.94 2.65 3747 2.28 4.51 1.64
MT/MTZ 36 JG 6005 2.13 4.09 2.81 4371 2.66 4.91 1.64
MT/MTZ 40 JH 6398 2.33 4.89 2.74 4889 3.00 5.36 1.63
MT/MTZ 44 HJ 6867 2.52 5.65 2.72 5152 3.16 6.37 1.63
MT/MTZ 50 HK 8071 2.88 5.50 2.80 6152 3.61 6.53 1.70
MT/MTZ 56 HL 9069 3.21 5.83 2.82 7001 4.00 7.07 1.75
MT/MTZ 64 HM 1571 3.62 6.96 2.86 8132 4.54 8.30 1.79
MT/MTZ 72 HP 11853 4.01 7.20 2.96 9153 4.99 8.64 1.84
MT/MTZ 80 HP 13578 4.63 8.45 2.93 10524 5.84 10.12 1.80
MT/MTZ 100 HS 15529 5.28 10.24 2.94 12571 6.83 12.16 1.76
MT/MTZ 125 HU 19067 6.29 10.80 3.03 15714 8.53 13.85 1.84
MT/MTZ 144 HV 23620 7.83 13.78 3.02 18076 9.74 16.25 1.86
MT/MTZ 160 HW 25856 8.57 14.67 3.02 25713 11.00 17.94 1.84
MTM/MTZ200 HSS 3571 10.45 20.28 2.94 23800 13.53 24.06 1.76
MTM/MTZ 250 HUU 37746 12.45 21.38 3.03 31121 16.88 27.43 1.84
MTM/MTZ288 HVV 46773 15.49 27.29 3.02 35779 19.28 32.18 1.86
MTM/MTZ 320 HWW 51169 16.98 29.06 3.01 40093 21.76 35.51 1.84

Ā 

50HZ DATA Ā 
Model Ā 50Hz Nominal Cooling Capacity/Capacity Input Power COP E.E.R. c Displacement Displacement Injection flow d Net.W
TR W Btu/h KW W/W Btu/h/W cm³/rev m3/h dm3 kg
R22 Single Sm084 7 20400 69600 6.12 3.33 11.4 114.5 19.92 3.3 64
SM090 7.5 21800 74400 6.54 3.33 11.4 120.5 20.97 3.3 65
SM100 8 23100 79000 6.96 3.33 11.3 127.2 22.13 3.3 65
SM110 9 25900 88600 7.82 3.32 11.3 144.2 25.09 3.3 73
SM112 9.5 27600 94400 7.92 3.49 11.9 151.5 26.36 3.3 64
SM115 9.5 28000 95600 8.31 3.37 11.5 155.0 26.97 3.8 78
SM120 10 35710 157100 8.96 3.36 11.5 166.6 28.99 3.3 73
SM124 10 31200 106300 8.75 3.56 12.2 169.5 29.5 3.3 64
SM125 10 35710 157100 8.93 3.37 11.5 166.6 28.99 3.8 78
SM147 12 36000 123000 10.08 3.58 12.2 193.5 33.7 3.3 67
SM148 12 36100 123100 10.80 3.34 11.4 199.0 34.60 3.6 88
SM160 13 39100 133500 11.60 3.37 11.5 216.6 37.69 4.0 90
SM161 13 39000 133200 11.59 3.37 11.5 216.6 37.69 3.6 88
SM175 14 42000 143400 12.46 3.37 11.5 233.0 40.54 6.2 100
SM/SY185 15 45500 155300 13.62 3.34 11.4 249.9 43.48 6.2 100
SY240 20 61200 2 0571 0 18.20 3.36 11.5 347.8 60.50 8.0 150
SY300 25 78200 267000 22.83 3.43 11.7 437.5 76.10 8.0 157
SY380 30 94500 322700 27.4 3.46 11.8 531.2 92.40 8.4 158
R107C Single SZ084 7 19300 66000 6.13 3.15 10.7 114.5 19.92 3.3 64
SZ090 7.5 20400 69600 6.45 3.16 10.8 120.5 20.97 3.3 65
SZ100 8 21600 73700 6.84 3.15 10.8 127.2 22.13 3.3 65
SZ110 9 24600 84000 7.76 3.17 10.8 144.2 25.09 3.3 73
SZ115 9.5 26900 91700 8.49 3.16 10.8 155.0 26.97 3.8 78
SZ120 10 28600 97600 8.98 3.18 10.9 166.6 28.99 3.3 73
SZ125 10 28600 97500 8.95 3.19 10.9 166.6 28.99 3.8 78
SZ148 12 35100 119800 10.99 3.19 10.9 199.0 34.60 3.6 88
SZ160 13 38600 131800 11.77 3.28 11.2 216.6 37.69 4.0 90
SZ161 13 37900 129500 11.83 3.21 10.9 216.6 37.69 3.6 88
SZ175 14 45710 136900 12.67 3.17 10.8 233.0 40.54 6.2 100
SZ185 15 43100 147100 13.62 3.16 10.8 249.9 43.48 6.2 100
SZ240 20 59100 201800 18.60 3.18 10.9 347.8 60.50 8.0 150
SZ300 25 72800 248300 22.70 3.20 10.9 437.5 76.10 8.0 157
SZ380 30 89600 305900 27.60 3.25 11.1 431.2 92.40 8.4 158

Model Nominal Cooling Capacity 60Hz Nominal Cooling Capacity/Capacity Input Power maximum rated current COPĀ  DisplacementĀ  DisplacementĀ  Injection flow Net.W
TR W Btu/h kW MCC COP W/W EERBtu/h/W cmVrev m3/h dm3 kg
R22 HRM032U4 2.7 7850 26790 2.55 9.5 3.08 10.5 43.8 7.6 1.06 31
HRM034U4 2.8 8350 28490 2.66 9.5 3.14 10.5 46.2 8.03 1.06 31
HRM038U4 32 9240 31520 2.94 10.0 3.14 10.7 46.2 8.03 1.06 31
HRM040U4Ā  3.3 9710 33120 2.98 10 3.26 11.1 54.4 9.47 1.06 31
HRM042U4 35 10190 34770 3.13 11.0 3.26 11.1 57.2 9.95 1.06 31
HRM045U4 3.8 10940 37310 3.45 12 3.17 10.8 61.5 10.69 1.33 31
HRM047U4 3.9 11500 39250 3.57 12.0 3.23 11.0 64.1 11.15 1.33 31
HRM048U4 4 11510 39270 3.57 12.5 3.23 11 64.4 11.21 1.57 37
HRM051T4 4.3 12390 44280 3.67 13.0 3.37 11.5 68.8 11.98 1.57 37
HRM051U4 4.3 12800 43690 3.83 13 3.34 11.4 68.8 11.98 1.57 37
HRM054U4 4.5 13390 45680 3.97 13.1 3.37 11.5 72.9 12.69 1.57 37
HRM058U4 4.8 14340 48930 4.25 15 3.37 11.5 78.2 13.6 1.57 37
HRM060T4 5.0 14570 49720 4.28 15.0 3.40 11.6 81.0 14.09 1.57 37
HRM060U4 5.0Ā  14820 5 0571 4.4 15 3.37 11.5 81 14.09 1.57 37
HLM068T4 5.7 16880 57580 5.00 15.0 3.37 11.5 93.1 16.20 1.57 37
HLM072T4 6.0Ā  17840 6 0571 5.29 15 3.37 11.5 98.7 17.2 1.57 37
HLM075T4 6.3 18430 62880 5.37 16.0 3.43 11.7 102.8 17.88 1.57 37
HLM081T4 6.8 19890 67880 5.8 17 3.43 11.7 110.9 19.3 1.57 37
HCM094T4 7.8 23060 78670 6.80 21.0 3.39 11.6 126.0 21.93 2.66 44
HCM109T4 9.1 26690 91070 7.77 24 3.43 11.7 148.8 25.89 2.66 44
HCM120T4 10.0 29130 99390 8.51 25.0 3.42 11.7 162.4 28.26 2.66 44
R407C HRP034T4Ā  2.8 7940 27080 2.68 9.5 2.96 10.1 46.2 8 1.06 31
HRP038T4 3.2 8840 30150 2.82 11 3.14 10.7 51.6 8.98 1.06 31
HRP040T4 3.3 9110 31080 3.14 11.5 2.9 9.9 54.4 9.47 1.06 31
HRP042T4 3.5 9580 32680 3.3 10 2.9 9.9 57.2 9.95 1.06 31
HRP045T4 3.8 1571 36890 3.58 12 3.02 10.3 61.5 10.69 1.33 31
HRP047T4 3.9 11130 37980 3.69 12 3.02 10.3 64.1 11.15Ā Ā Ā Ā Ā Ā Ā Ā Ā  1.33 31
HRP048T4 4.0Ā  11100 37880 3.35 12 3.31 11.3 64.4 1L21 1.57 37
HRP051T4 4.3 12120 41370 3.83 13 3.17 10.8 68.8 11.98 1.57 37
HRP054T4 4.5 12570 42880 3.97 12.5 3.17 10.8 72.8 12.66 1.57 37
HRP058T4 4.8 13470 45970 4.25 14.0 3.17 10.8 78.2 13.6 1.57 37
HRP060T4 5.0Ā  13860 47280 4.26 15 3.25 11.1 81 14.09 1.57 37
HLP068T4 5.7 15700 53560 5.10 15.0 3.08 10.5 93.1 16.20 1.57 37
HLP072T4 6.0Ā  16810 57350 5.16 15 3.26 11.1 98.7 17.17 1.57 37
HLP075T4 6.3 18040 61550 5.54 16.0 3.26 11-1 102.8 17.88 1.57 37
HLP081T4 6.8 18600 63470 5,66 17 3.28 11,2 110,9 19,30 1,57 37
HCP094T4 7.8 21590 73660 6.63 21.0 3.26 11.1 126.0 21.93 2.66 44
HCP109T4 9.1 25070 85550 7.77 24 3.23 11 148.8 25.89 2.66 44
HCP120T4 10.0 27370 93400 8.47 25.0 3.23 11.0 162.4 28.26 2.66 44
R410A HRH571U4 2.4 7120 24310 2.43 10 2.93 10 27.8 4.84 1.06 31
HRH031U4 26 7530 25710 2.67 10.0 2.82 9.62 29.8 5.19 1.06 31
HRH032U4 2.7 7670 26170 2.75 10 2.79 9.51 30.6 5.33 1.06 31
HRH034U4 2.8 8500 29000 2.90 10.0 2.93 10.0 33.3 5.75 1.06 31
HRH036U4 3 8820 30110 3.13 10 2.82 9.62 34.7 6.04 1.06 31
HRH038U4 3.2 9250 31560 3.35 12.0 2.76 9.41 36.5 6.36 1.06 32
HRH040U4 3.3 15710 34810 3.58 12 2.85 9.72 39.6 6.9 1.33 32
HRH041U4 3.3 10050 34300 3.43 12.5 2.93 10 39.3 6.8 1.57 37
HRH044U4 3.7 1 0571 36940 3.92 13.5 2.76 9.41 42.6 7.41 1.57 37
HRH049U4 4.1 12110 41320 4.04 13.5 2.99 10.22 47.4 8.24 1.57 37
HRH051U4 4.3 12860 43890 4.21 13 3.05 10.42 49.3 5.58 1.57 37
HRH054U4 4.5 13340 45510 4.41 15.0 3.02 10.32 52.1 9.07 1.57 37
HRH056U4 4.7 13830 47200 4.58 15 3.02 1031 54.1 9.42 1.57 37
HLH061T4 5.1 15210 51880 4.89 15.0 3.11 1061 57.8 10.10 1.57 37
HLH068T4Ā  5.7 16880 57610 5.26 19 3.21 1096 64.4 11.21 1.57 37
HLJ072T4 6.0 17840 60900 5.56 19.0 3.21 11.0 68.0 11.82 1.57 37
HLJ075T4Ā  6.3 18600 63490 5.77 18 3.22 11 70.8 12.32 1.57 37
HLJ083T4 6.9 20420 69690 6.28 19.0 3.25 Hl 78.1 13.59 1.57 37
HCJ090T4 7.5 22320 76190 7.19 19 3.11 10.6 86.9 15.11 2.66 44
HCJ105T4 8.8 26100 89090 8.25 25.0 3.16 10.8 101.6 17.68 2.66 44
HCJ120T4 10 29610 157180 9.53 27 3.11 10.6 116.4 20.24 2.66 44

Ā 

Model HP Voltage
MLM019T5LP9 2.5 220-240V-1-50HZ
MLM571T5LP9 3 220-240V-1-50HZ
MLM026T5LP9 3.5 220-240V-1-50HZ
MLM015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLM019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLM571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLM026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLM030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLM038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLM045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLM048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLM058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLM066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLM076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is AB alkyl benzene oil, the refrigerant is R22.
Ā 
Model HP Voltage
MLZ019T5LP9 2.5 220-240V-1-50HZ
MLZ571T5LP9 3 220-240V-1-50HZ
MLZ026T5LP9 3.5 220-240V-1-50HZ
MLZ015T4LP9 2 380-415V-3-50Hz&460V-3-60Hz
MLZ019T4LP9 2.5 380-415V-3-50Hz&460V-3-60Hz
MLZ571T4LP9 3 380-415V-3-50Hz&460V-3-60Hz
MLZ026T4LP9 3.5 380-415V-3-50Hz&460V-3-60Hz
MLZ030T4LC9 4 380-415V-3-50Hz&460V-3-60Hz
MLZ038T4LC9 5 380-415V-3-50Hz&460V-3-60Hz
MLZ045T4LC9 6 380-415V-3-50Hz&460V-3-60Hz
MLZ048T4LC9 7 380-415V-3-50Hz&460V-3-60Hz
MLZ058T4LC9 7.5 380-415V-3-50Hz&460V-3-60Hz
MLZ066T4LC9 9 380-415V-3-50Hz&460V-3-60Hz
MLZ076T4LC9 10 380-415V-3-50Hz&460V-3-60Hz
*MLM series general-purpose lubricating oil is PVE ugly oil, refrigerant R404A/R134A/R507/R22

Archean refrigeration has been focusing on the refrigeration industry for more than 10 years. The compressors are sold all over the world and have been well received. The company has accumulated strong experience in the compressor market, rich technical support, and a satisfactory one-stop procurement solution. You can rest assured You don’t need to worry about this series, from placing an order to receiving the goods. We provide a complete solution to serve customers well, which is our purpose of hospitality.

Ā 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Installation Type: Movable Type
Lubrication Style: Lubricated
Cylinder Position: Vertical
Model: Sm185s4RC
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Role of Air Dryers in Scroll Compressor Systems?

Air dryers play a crucial role in scroll compressor systems by removing moisture and contaminants from the compressed air. Here’s a detailed explanation:

Air produced by scroll compressors typically contains moisture, oil vapors, and solid particles. These contaminants can negatively impact the performance and reliability of the compressor system and downstream equipment. Air dryers are specifically designed to address these issues and ensure the delivery of clean and dry compressed air.

The primary roles of air dryers in scroll compressor systems are as follows:

1. Moisture Removal:

Compressed air often contains high levels of moisture, which can lead to various problems. Moisture can cause corrosion in the compressed air system, leading to damage to pipes, valves, and other components. It can also adversely affect the performance of pneumatic tools and equipment. Air dryers remove moisture from the compressed air by employing different drying techniques, such as refrigeration, adsorption, or membrane drying. This helps prevent moisture-related issues and ensures the delivery of dry air to the application.

2. Contaminant Removal:

In addition to moisture, compressed air may contain oil vapors, solid particles, and other contaminants. These contaminants can originate from lubricants used in the compressor, ambient air, or the compressor system itself. Air dryers incorporate features like coalescing filters, activated carbon filters, or desiccant beds to trap and remove these contaminants from the compressed air. By removing contaminants, air dryers help maintain the cleanliness and quality of the compressed air, preventing damage to downstream equipment and ensuring reliable operation.

3. Protection of Equipment:

Air dryers play a vital role in protecting the scroll compressor and downstream equipment. Moisture and contaminants can cause corrosion, fouling, and wear in the compressor, valves, air tools, and other components. By removing moisture and contaminants, air dryers help extend the lifespan of the compressor and reduce the risk of equipment failures, downtime, and costly repairs. They also contribute to improved performance and efficiency of pneumatic equipment.

4. Enhanced Product Quality:

In applications where compressed air comes into direct contact with products, such as in food and beverage processing or pharmaceutical manufacturing, air quality is critical. Contaminated or moist compressed air can compromise product quality, contaminate sensitive processes, or pose health risks. Air dryers ensure that the compressed air used in these applications meets the required quality standards, contributing to the production of high-quality and safe products.

5. Energy Efficiency:

By removing moisture and contaminants from the compressed air, air dryers contribute to improved energy efficiency of the scroll compressor system. Moisture in the compressed air can cause pressure drops and increase the energy consumption of pneumatic equipment. Dry and clean compressed air reduces the load on the system and allows for more efficient operation, resulting in energy savings and reduced operational costs.

It’s important to select the appropriate type and capacity of air dryer based on the specific requirements of the scroll compressor system. Factors such as the desired level of air quality, flow rate, operating conditions, and the type of contaminants present should be considered when choosing an air dryer.

In summary, air dryers play a vital role in scroll compressor systems by removing moisture and contaminants from the compressed air. They contribute to improved performance, reliability, and energy efficiency of the compressor system, as well as protect downstream equipment and ensure the delivery of clean and dry compressed air for various applications.

air compressor

Are There Oil-Free Scroll Compressors Available?

Yes, oil-free scroll compressors are available in the market. Here’s a detailed explanation:

1. Oil-Free Design:

Oil-free scroll compressors, also known as dry scroll compressors, are specifically designed to operate without the need for lubricating oil. Unlike lubricated scroll compressors that rely on oil for lubrication and sealing, oil-free scroll compressors utilize alternative methods to achieve smooth and reliable operation.

2. Specialized Coatings:

One common approach in oil-free scroll compressors is the use of specialized coatings on the scroll elements. These coatings, typically made of durable materials such as Teflon or other polymers, provide a low-friction surface that reduces wear and eliminates the need for oil-based lubrication. The specialized coatings also contribute to sealing and maintaining the efficiency of the compression process.

3. Tight Tolerances:

Oil-free scroll compressors are manufactured with tight tolerances to ensure proper mating between the scroll elements. The precise design and manufacturing processes aim to minimize internal leakage and optimize performance without the need for oil-based lubrication. The tight tolerances also contribute to achieving higher efficiency and reliability.

4. Increased Cooling:

Oil-free scroll compressors often incorporate enhanced cooling mechanisms to manage heat generated during compression. They may feature improved heat dissipation through advanced materials, enhanced airflow, or additional cooling technologies. Efficient cooling helps to maintain the compressor’s temperature within acceptable limits and ensures reliable operation.

5. Reduced Maintenance:

Oil-free scroll compressors generally require less maintenance compared to lubricated compressors. Without the need for oil changes, filter replacements, or oil level checks, the maintenance requirements are simplified. Additionally, the absence of oil eliminates the risk of oil leaks or contamination, reducing the potential for system downtime and environmental concerns.

6. Application Range:

Oil-free scroll compressors are suitable for various applications where oil-free operation is required or preferred. They are commonly used in industries such as electronics, semiconductor manufacturing, medical and dental equipment, laboratories, food and beverage, and pharmaceuticals. These applications often demand clean air or gas without the risk of oil contamination.

7. Considerations:

While oil-free scroll compressors offer advantages in certain applications, it’s important to consider some factors. Oil-free compressors may have slightly lower efficiency compared to lubricated compressors. Additionally, the specialized coatings on the scroll elements may require periodic inspection and maintenance to ensure their effectiveness over the compressor’s lifespan.

When considering the use of oil-free scroll compressors, it’s recommended to consult with compressor manufacturers or HVAC professionals to evaluate the specific requirements of the application and ensure compatibility with the intended system design and performance goals.

air compressor

Can Scroll Compressors Be Used in HVAC Systems?

Yes, scroll compressors are commonly used in HVAC (heating, ventilation, and air conditioning) systems. Here’s a detailed explanation:

Scroll compressors offer several advantages that make them well-suited for HVAC applications:

1. High Efficiency: Scroll compressors are known for their high efficiency. The continuous compression process with minimal clearance volume reduces energy losses and improves overall efficiency compared to other compressor types. This can result in energy savings and lower operating costs for HVAC systems.

2. Quiet Operation: Scroll compressors operate with lower noise levels compared to some other compressor types. The interlocking spiral motion of the scrolls creates a smooth compression process with minimal pulsations, reducing vibration and noise generation. This is particularly beneficial for HVAC systems in noise-sensitive environments or residential settings where quiet operation is desired.

3. Compact Design: Scroll compressors have a relatively compact design, making them suitable for HVAC systems where space is limited. The absence of reciprocating parts and the compact arrangement of the scrolls contribute to the compactness of these compressors. This allows for easier installation in air conditioning units, heat pumps, and other HVAC equipment with space constraints.

4. Enhanced Reliability: Scroll compressors offer enhanced reliability due to their simple design and fewer moving parts compared to other compressor types. The absence of valves, piston rings, and other wearing components reduces the chances of failure or breakdown. This can result in improved system uptime and reduced downtime for maintenance or repairs in HVAC systems.

5. Variable Speed Operation: Many scroll compressors are available with variable speed drive (VSD) technology. This allows the compressor to adjust its speed and capacity based on the cooling or heating load requirements of the HVAC system. Variable speed scroll compressors offer better energy efficiency by matching the compressor’s output to the system’s demand, resulting in optimized performance and reduced energy consumption.

6. Wide Range of Capacities: Scroll compressors are available in a wide range of capacities to meet the varying needs of HVAC systems. Whether it’s a small residential air conditioning unit or a large commercial HVAC system, there are scroll compressors available in different sizes and configurations to accommodate the specific cooling or heating requirements.

Due to these advantages, scroll compressors are commonly used in various HVAC applications, including:

– Air conditioning systems for residential, commercial, and industrial buildings

– Heat pumps for heating and cooling applications

– Chiller systems for large-scale cooling in commercial and industrial settings

– Rooftop units for packaged HVAC systems on the roofs of buildings

– Refrigeration units for cooling and preserving perishable goods

– Process cooling and air handling units in industrial applications

In summary, scroll compressors are widely used in HVAC systems due to their high efficiency, quiet operation, compact design, enhanced reliability, variable speed capabilities, and wide range of capacities. These advantages make them a popular choice for various HVAC applications, providing efficient and reliable cooling and heating solutions.

China best 15HP Scroll Compressor Refrigeration Compressor Price List Sm185s4RC for Air Conditioner   mini air compressorChina best 15HP Scroll Compressor Refrigeration Compressor Price List Sm185s4RC for Air Conditioner   mini air compressor
editor by CX 2024-05-07

Oil-free scroll air compressor

As one of the oil-free scroll air compressor manufacturers, suppliers, and exporters of mechanical products, We offer oil-free scroll air compressors and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of oil-free scroll air compressors.

Recent Posts